Noncircular Sources-Based Sparse Representation Algorithm for Direction of Arrival Estimation in MIMO Radar with Mutual Coupling
نویسندگان
چکیده
In this paper, a reweighted sparse representation algorithm based on noncircular sources is proposed, and the problem of the direction of arrival (DOA) estimation for multiple-input multiple-output (MIMO) radar with mutual coupling is addressed. Making full use of the special structure of banded symmetric Toeplitz mutual coupling matrices (MCM), the proposed algorithm firstly eliminates the effect of mutual coupling by linear transformation. Then, a reduced dimensional transformation is exploited to reduce the computational complexity of the proposed algorithm. Furthermore, by utilizing the noncircular feature of signals, the new extended received data matrix is formulated to enlarge the array aperture. Finally, based on the new received data, a reweighted matrix is constructed, and the proposed method further designs the joint reweighted sparse representation scheme to achieve the DOA estimation by solving the l1-norm constraint minimization problem. The proposed method enlarges the array aperture due to the application of signal noncircularity, and in the presence of mutual coupling, the proposed algorithm provides higher resolution and better angle estimation performance than ESPRIT-like, l1-SVD and l1-SRDML (sparse representation deterministic maximum likelihood) algorithms. Numerical experiment results verify the effectiveness and advantages of the proposed method.
منابع مشابه
Direction of Arrival Estimation for MIMO Radar via Unitary Nuclear Norm Minimization
In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transfor...
متن کاملDirection of Departure (DOD) and Direction of Arrival Estimation in Bistatic MIMO Radar Using Covariance Recovery of Sparse Targets
This letter propose a new method based on covariance sparse target recovery for Direction of Departure (DOD) and Direction of Arrival (DOA) in bistatic multi -input multi-output radar. The letter use this property that the number of target in the space is low. In this paper we recover the power of incident signal as a diagonal matrix which its diagonal element are corresponding to the impinging...
متن کاملA Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملSparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar
In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 nor...
متن کاملReal-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar
In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 9 شماره
صفحات -
تاریخ انتشار 2016